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Assignment 2—solutions

Exercise 1

Let (Ω, F ,P) be a probability space and let X , Y , and Z be random variables and suppose that Z is σ(X, Y )-measurable.
Use the monotone class theorem to show that there exists a measurable function f : R2 −→ R such that Z = f(X, Y ).

Let us first assume that Z is bounded. Define

• H as the set of bounded random variables of the form Z̃ = f(X, Y ) for some measurable bounded
function f : R2 → R,

• A = {1{X∈A}1{Y ∈B} : A, B ∈ B(R)}.

It is clear that A is stable by multiplication and that H is a vector space containing constant function
1 as well as the set A. We verify that H+ = {Z̃ ∈ H : Z̃ ≥ 0} is stable by taking bounded non-decreasing
limits.

Let us have a sequence (Zk) ⊂ H+ and such that 0 ≤ Z1 ≤ . . . ≤ Zn ≤ . . . ≤ C for some finite constant
C > 0. Since (Zk) ⊂ H+ ⊂ H, there exist measurable bounded functions fk, k ∈ N, such that Zk =
fk(X, Y ), k ∈ N. Let us denote Z̃ := limk→∞ Zk. By monotonicity, Z̃ = supk∈N Zk. It then suffices to take
f(x, y) := supk∈N fk(x, y) ∨ C to get Z̃ = f(X, Y ). Hence, Z̃ ∈ H+ and therefore H+ is stable by taking
bounded non-decreasing limits. Because σ(A) = σ(X, Y ), monotone class theorem then yields that H
contains all bounded σ(X, Y )-measurable functions.

Let now Z be a general σ(X, Y )-measurable random variable. Clearly, Zn+ := Z+1{|Z+|≤n} and Zn− :=
Z−1{|Z−|≤n} are bounded and σ(X, Y )-measurable for every n ∈ N. By the first part, there are measurable
functions fn+ and fn− such that Zn+ = fn+(X, Y ) and Zn− = fn−(X, Y ).

It follows that

Z = Z+ − Z− = sup
n∈N

Zn+ − sup
n∈N

Zn− = sup
n∈N

fn+(X, Y ) − sup
n∈N

fn−(X, Y ).

It is then clear that we can take

f(x, y) =

(

sup
n∈N

fn+(x, y)

)

1{|supn∈N
fn+(x,y)|<∞} −

(

sup
n∈N

fn−(x, y)

)

1{|supn∈N
fn−(x,y)|<∞}

to get Z = f(X, Y ).

Exercise 2

Fix two measurable processes X and Y on some probability space (Ω, F ,P).

1) Assume that X and Y are both right-continuous or both left-continuous. Show that they are P-modifications of
each other if and only if they are P-indistinguishable.

2) Show that the previous result is not true in general.

1) We just show that the fact that X is a version of Y implies the indistinguishability, since the converse
is obvious. Without loss of generality, we assume that X and Y are right-continuous.
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For t ≥ 0, we define the null set Nt := {ω : Xt(ω) 6= Yt(ω)}. We consider N := ∪t∈Q+ Nt, which re-
mains a null set as a countable union of null sets. Finally, we introduce the null set AZ := {ω :
Z·(ω) not right-continuous} for Z = X, Y and we define M := AX ∪ AY ∪ N , which is still a null set.

It suffices to check that, for all ω ∈ M c, Xt(ω) = Yt(ω) ∀ t ≥ 0. By definition of M we clearly have that,
for ω ∈ M c, Xt(ω) = Yt(ω) ∀ t ∈ Q+. Now, take any t ≥ 0 and let (tn) be a sequence in Q+ with tn ↓ t. The
right-continuity of the paths X·(ω) and Y·(ω) then implies Xt(ω) = limn→∞ Xtn

(ω) = limn→∞ Ytn
(ω) = Yt(ω).

2) Take Ω = [0, ∞), F = B([0, ∞)) the Borel σ-algebra, and P a probability measure with P ({ω}) = 0, ∀ω ∈ Ω
(for instance, the exponential distribution). Set X ≡ 0 and

Yt(ω) =

{

1, t = ω,

0, else.

Then, P[Xt = Yt] = 1, ∀t ≥ 0, since single points have no mass, but {Xt = Yt, ∀t ≥ 0} = ∅. Note that all
sample paths of X are continuous, while all sample paths of Y are discontinuous at t = ω.

Exercise 3

Let X be a process on a filtered probability space (Ω, F ,F,P), where F satisfies the usual conditions. We want to show

X F-optional =⇒ X F–progressively measurable =⇒ X F-adapted and measurable.

1) Show that every F–progressively measurable process is F-adapted and measurable.

2) Assume that X is F-adapted and that every path of X is right-continuous (resp. left-continuous). Show that X
is F–progressively measurable.

3) Show that O(F) is generated by all bounded, càdlàg, F-adapted and measurable processes.

4) Use the monotone class theorem to show that every F-optional process is F–progressively measurable.

1) Let X be F–progressively measurable. Then X1Ω×[0,t] is Ft ⊗ B[0, t]-measurable for every t ≥ 0. For any
t ≥ 0, we see that Xt = X◦it, where it : (Ω, Ft) −→ (Ω×[0, t], Ft⊗B[0, t]), ω 7−→ (ω, t) is measurable. Therefore,
Xt is Ft-measurable for every t ≥ 0. Moreover, the processes Xn defined by Xn

u := X1Ω×[0,n]1[0,n](u), u ≥ 0,
are F ⊗B[0, ∞)-measurable. Since Xn → X pointwise (in (t, ω)) as n → ∞, also X is F ⊗B[0, ∞)-measurable.

2) Fix a t ≥ 0 and consider the sequence of processes Y n on Ω × [0, t] given by Y n
0 = X0 and

Y n
u :=

2n−1
∑

k=1

1(tk2−n,t(k+1)2−n](u)Xt(k+1)2−n , for u ∈ (0, t].

By construction, each Y n is Ft ⊗ B[0, t]-measurable. Since Y n → X |Ω×[0,t] pointwise as n → ∞ due to
right-continuity, the result follows.

3) Let X be adapted, with all paths being càdlàg. Consider the processes Xn := (X ∧ n) ∨ (−n). Clearly,
each Xn is bounded and càdlàg. Thus, each Xn is σ(M)-measurable. As the pointwise limit of the Xn,
also X is σ(M)-measurable. It follows that O ⊂ σ(M). The reverse inclusion is trivial.

4) If a process X is optional, then Xn := X 1{|X|≤n} is also optional and of course Xn → X; so if each
Xn is progressively measurable, then so is X, and hence we can assume without loss of generality that
X is bounded. Let H denote the real vector space of bounded, progressively measurable processes. By
2), H contains M. Clearly, H contains the constant process 1 and is closed under monotone bounded
convergence. Also, M is closed under multiplication. The monotone class theorem yields that every
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bounded σ(M)-measurable process is contained in H. Due to 3), we conclude that every bounded optional
process is progressively measurable.

Exercise 4

Let (Ω, F ,P) be a probability space and B a P–Brownian motion on [0, 1]. Let k ∈ N⋆, and 0 = s1 < t1 < s2 < t2 <
· · · < tk < sk+1 = 1. Find the law of (Bt1 , Bt2 , . . . , Btk

) conditional on (Bs1 , . . . , Bsk+1
).

Let D :=
{

a2−m : m ∈ N, a ∈ {0, 1, . . . , 2m}
}

. Let Z1, Z2,... be an infinite sequence of i.i.d. standard normal random
variables. Construct in terms of the Zj a stochastic process (Wt)t∈D such that the law of W is equal to the law of
(Bt)t∈D.

1) Note that (Bs1 , Bt1 , . . . , Btk
, Bsk+1

) is a Gaussian vector. We now claim that for each k ∈ N⋆, the random
variable

∆k := Btk
−

tk − sk

sk+1 − sk
Bsk+1

−
sk+1 − tk

sk+1 − sk
Bsk

,

is normally distributed with mean 0 and variance (sk+1 − tk)(tk − sk)/(sk+1 − sk). In addition, ∆k is
P-independent of (Bs1 , . . . , Bsk+1

).

Indeed, the first claim is direct form the Gaussian vector property, as well as the equality

∆k = −
tk − sk

sk+1 − sk

(

Bsk+1
− Btk

)

−
sk+1 − tk

sk+1 − sk
Bsk

,

which allows to easily compute the variance. As for the second claim, it is enough to show that ∆k is
uncorrelated with Bsj+1 − Bsj

, for any j ∈ {1, . . . , k}, which is direct by computations.

We conclude that the law of (Bt1 , Bt2 , . . . , Btk
) conditional on (Bs1 , . . . , Bsk+1

) is Gaussian with mean vector
µ with

µk :=
tk − sk

sk+1 − sk
Bsk+1

+
sk+1 − tk

sk+1 − sk
Bsk

, k ∈ N⋆,

and variance–covariance matrix Σ which is diagonal with

Σk,k :=
(sk+1 − tk)(tk − sk)

sk+1 − sk
.

2) Let Dn := {a2−m : m ∈ {1, . . . , n}, a ∈ {0, 1, . . . , 2zm}}. We construct W recursively on each Dn, so that

finally we obtain W on D. The first step is to define W1 := Z1, so that clearly W
law
= B on {0, 1}. If we

have defined W on Dn in terms of (Z1, Z2, . . . , Z2n−1), we extend it to Dn+1 by

W(2j−1)2−(m+1) :=
1

2
W(j−1)2−m +

1

2
Wj2−m + 2−n/2−1Z2n+j , j ∈ {1, . . . , 2n}.

By induction, assume that W
law
= B on Dn. We also obtain from this construction that the law of W |Dn+1

conditional on W |Dn is equal to the law of B|Dn+1 conditional on B|Dn , by 1). Therefore, the inductive
step is valid, and we finally obtain that the law of W is equal to the law of B|D by the Ionescu–Tulcea
theorem.
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