Assignment 2-solutions

Exercise 1

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X, Y, and Z be random variables and suppose that Z is $\sigma(X, Y)$-measurable. Use the monotone class theorem to show that there exists a measurable function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ such that $Z=f(X, Y)$.

Let us first assume that Z is bounded. Define

- \mathcal{H} as the set of bounded random variables of the form $\tilde{Z}=f(X, Y)$ for some measurable bounded function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,
- $\mathcal{A}=\left\{\mathbf{1}_{\{X \in A\}} \mathbf{1}_{\{Y \in B\}}: A, B \in \mathcal{B}(\mathbb{R})\right\}$.

It is clear that \mathcal{A} is stable by multiplication and that \mathcal{H} is a vector space containing constant function 1 as well as the set \mathcal{A}. We verify that $\mathcal{H}^{+}=\{\tilde{Z} \in \mathcal{H}: \tilde{Z} \geq 0\}$ is stable by taking bounded non-decreasing limits.

Let us have a sequence $\left(Z_{k}\right) \subset \mathcal{H}^{+}$and such that $0 \leq Z_{1} \leq \ldots \leq Z_{n} \leq \ldots \leq C$ for some finite constant $C>0$. Since $\left(Z_{k}\right) \subset \mathcal{H}^{+} \subset \mathcal{H}$, there exist measurable bounded functions $f_{k}, k \in \mathbb{N}$, such that $Z_{k}=$ $f_{k}(X, Y), k \in \mathbb{N}$. Let us denote $\tilde{Z}:=\lim _{k \rightarrow \infty} Z_{k}$. By monotonicity, $\tilde{Z}=\sup _{k \in \mathbb{N}} Z_{k}$. It then suffices to take $f(x, y):=\sup _{k \in \mathbb{N}} f_{k}(x, y) \vee C$ to get $\tilde{Z}=f(X, Y)$. Hence, $\tilde{Z} \in \mathcal{H}^{+}$and therefore \mathcal{H}^{+}is stable by taking bounded non-decreasing limits. Because $\sigma(\mathcal{A})=\sigma(X, Y)$, monotone class theorem then yields that \mathcal{H} contains all bounded $\sigma(X, Y)$-measurable functions.

Let now Z be a general $\sigma(X, Y)$-measurable random variable. Clearly, $Z^{n+}:=Z^{+} 1_{\left\{\left|Z^{+}\right| \leq n\right\}}$ and $Z^{n-}:=$ $Z^{-} 1_{\left\{\left|Z^{-}\right| \leq n\right\}}$ are bounded and $\sigma(X, Y)$-measurable for every $n \in \mathbb{N}$. By the first part, there are measurable functions f^{n+} and f^{n-} such that $Z^{n+}=f^{n+}(X, Y)$ and $Z^{n-}=f^{n-}(X, Y)$.

It follows that

$$
Z=Z^{+}-Z^{-}=\sup _{n \in \mathbb{N}} Z^{n+}-\sup _{n \in \mathbb{N}} Z^{n-}=\sup _{n \in \mathbb{N}} f^{n+}(X, Y)-\sup _{n \in \mathbb{N}} f^{n-}(X, Y)
$$

It is then clear that we can take

$$
f(x, y)=\left(\sup _{n \in \mathbb{N}} f^{n+}(x, y)\right) \mathbf{1}_{\left\{\left|\sup _{n \in \mathbb{N}} f^{n+}(x, y)\right|<\infty\right\}}-\left(\sup _{n \in \mathbb{N}} f^{n-}(x, y)\right) \mathbf{1}_{\left\{\left|\sup _{n \in \mathbb{N}} f^{n-(x, y)}\right|<\infty\right\}}
$$

to get $Z=f(X, Y)$.

Exercise 2

Fix two measurable processes X and Y on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

1) Assume that X and Y are both right-continuous or both left-continuous. Show that they are \mathbb{P}-modifications of each other if and only if they are \mathbb{P}-indistinguishable.
2) Show that the previous result is not true in general.
3) We just show that the fact that X is a version of Y implies the indistinguishability, since the converse is obvious. Without loss of generality, we assume that X and Y are right-continuous.

For $t \geq 0$, we define the null set $N_{t}:=\left\{\omega: X_{t}(\omega) \neq Y_{t}(\omega)\right\}$. We consider $N:=\cup_{t \in \mathbb{Q}_{+}} N_{t}$, which remains a null set as a countable union of null sets. Finally, we introduce the null set $A_{Z}:=\{\omega$: $Z .(\omega)$ not right-continuous $\}$ for $Z=X, Y$ and we define $M:=A_{X} \cup A_{Y} \cup N$, which is still a null set.

It suffices to check that, for all $\omega \in M^{c}, X_{t}(\omega)=Y_{t}(\omega) \forall t \geq 0$. By definition of M we clearly have that, for $\omega \in M^{c}, X_{t}(\omega)=Y_{t}(\omega) \forall t \in \mathbb{Q}_{+}$. Now, take any $t \geq 0$ and let $\left(t_{n}\right)$ be a sequence in \mathbb{Q}_{+}with $t_{n} \downarrow t$. The right-continuity of the paths $X .(\omega)$ and $Y .(\omega)$ then implies $X_{t}(\omega)=\lim _{n \rightarrow \infty} X_{t_{n}}(\omega)=\lim _{n \rightarrow \infty} Y_{t_{n}}(\omega)=Y_{t}(\omega)$.
2) Take $\Omega=[0, \infty), \mathcal{F}=\mathcal{B}([0, \infty))$ the Borel σ-algebra, and P a probability measure with $P(\{\omega\})=0, \forall \omega \in \Omega$ (for instance, the exponential distribution). Set $X \equiv 0$ and

$$
Y_{t}(\omega)= \begin{cases}1, & t=\omega \\ 0, & \text { else }\end{cases}
$$

Then, $\mathbb{P}\left[X_{t}=Y_{t}\right]=1, \forall t \geq 0$, since single points have no mass, but $\left\{X_{t}=Y_{t}, \forall t \geq 0\right\}=\emptyset$. Note that all sample paths of X are continuous, while all sample paths of Y are discontinuous at $t=\omega$.

Exercise 3

Let X be a process on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, where \mathbb{F} satisfies the usual conditions. We want to show

$$
X \mathbb{F} \text {-optional } \Longrightarrow X \mathbb{F} \text {-progressively measurable } \Longrightarrow X \mathbb{F} \text {-adapted and measurable. }
$$

1) Show that every \mathbb{F}-progressively measurable process is \mathbb{F}-adapted and measurable.
2) Assume that X is \mathbb{F}-adapted and that every path of X is right-continuous (resp. left-continuous). Show that X is \mathbb{F}-progressively measurable.
3) Show that $\mathcal{O}(\mathbb{F})$ is generated by all bounded, càdlàg, \mathbb{F}-adapted and measurable processes.
4) Use the monotone class theorem to show that every \mathbb{F}-optional process is \mathbb{F}-progressively measurable.
5) Let X be \mathbb{F}-progressively measurable. Then $X 1_{\Omega \times[0, t]}$ is $\mathcal{F}_{t} \otimes \mathcal{B}[0, t]$-measurable for every $t \geq 0$. For any $t \geq 0$, we see that $X_{t}=X \circ i_{t}$, where $i_{t}:\left(\Omega, \mathcal{F}_{t}\right) \longrightarrow\left(\Omega \times[0, t], \mathcal{F}_{t} \otimes \mathcal{B}[0, t]\right), \omega \longmapsto(\omega, t)$ is measurable. Therefore, X_{t} is \mathcal{F}_{t}-measurable for every $t \geq 0$. Moreover, the processes X^{n} defined by $X_{u}^{n}:=X 1_{\Omega \times[0, n]} 1_{[0, n]}(u), u \geq 0$, are $\mathcal{F} \otimes \mathcal{B}[0, \infty)$-measurable. Since $X^{n} \rightarrow X$ pointwise (in (t, ω)) as $n \rightarrow \infty$, also X is $\mathcal{F} \otimes \mathcal{B}[0, \infty)$-measurable.
6) Fix a $t \geq 0$ and consider the sequence of processes Y^{n} on $\Omega \times[0, t]$ given by $Y_{0}^{n}=X_{0}$ and

$$
Y_{u}^{n}:=\sum_{k=1}^{2^{n}-1} 1_{\left(t k 2^{-n}, t(k+1) 2^{-n}\right]}(u) X_{t(k+1) 2^{-n}}, \text { for } u \in(0, t]
$$

By construction, each Y^{n} is $\mathcal{F}_{t} \otimes \mathcal{B}[0, t]$-measurable. Since $\left.Y^{n} \rightarrow X\right|_{\Omega \times[0, t]}$ pointwise as $n \rightarrow \infty$ due to right-continuity, the result follows.
3) Let X be adapted, with all paths being càdlàg. Consider the processes $X^{n}:=(X \wedge n) \vee(-n)$. Clearly, each X^{n} is bounded and càdlàg. Thus, each X^{n} is $\sigma(\mathcal{M})$-measurable. As the pointwise limit of the X^{n}, also X is $\sigma(\mathcal{M})$-measurable. It follows that $\mathcal{O} \subset \sigma(\mathcal{M})$. The reverse inclusion is trivial.
4) If a process X is optional, then $X^{n}:=X 1_{\{|X| \leq n\}}$ is also optional and of course $X^{n} \rightarrow X$; so if each X^{n} is progressively measurable, then so is X, and hence we can assume without loss of generality that X is bounded. Let \mathcal{H} denote the real vector space of bounded, progressively measurable processes. By 2), \mathcal{H} contains \mathcal{M}. Clearly, \mathcal{H} contains the constant process 1 and is closed under monotone bounded convergence. Also, \mathcal{M} is closed under multiplication. The monotone class theorem yields that every
bounded $\sigma(\mathcal{M})$-measurable process is contained in \mathcal{H}. Due to 3), we conclude that every bounded optional process is progressively measurable.

Exercise 4

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and B a $\mathbb{P}-$ Brownian motion on $[0,1]$. Let $k \in \mathbb{N}^{\star}$, and $0=s_{1}<t_{1}<s_{2}<t_{2}<$ $\cdots<t_{k}<s_{k+1}=1$. Find the law of $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{k}}\right)$ conditional on $\left(B_{s_{1}}, \ldots, B_{s_{k+1}}\right)$.

Let $D:=\left\{a 2^{-m}: m \in \mathbb{N}, a \in\left\{0,1, \ldots, 2^{m}\right\}\right\}$. Let Z_{1}, Z_{2}, \ldots be an infinite sequence of i.i.d. standard normal random variables. Construct in terms of the Z_{j} a stochastic process $\left(W_{t}\right)_{t \in D}$ such that the law of W is equal to the law of $\left(B_{t}\right)_{t \in D}$.

1) Note that $\left(B_{s_{1}}, B_{t_{1}}, \ldots, B_{t_{k}}, B_{s_{k+1}}\right)$ is a Gaussian vector. We now claim that for each $k \in \mathbb{N}^{\star}$, the random variable

$$
\Delta_{k}:=B_{t_{k}}-\frac{t_{k}-s_{k}}{s_{k+1}-s_{k}} B_{s_{k+1}}-\frac{s_{k+1}-t_{k}}{s_{k+1}-s_{k}} B_{s_{k}}
$$

is normally distributed with mean 0 and variance $\left(s_{k+1}-t_{k}\right)\left(t_{k}-s_{k}\right) /\left(s_{k+1}-s_{k}\right)$. In addition, Δ_{k} is \mathbb{P}-independent of $\left(B_{s_{1}}, \ldots, B_{s_{k+1}}\right)$.

Indeed, the first claim is direct form the Gaussian vector property, as well as the equality

$$
\Delta_{k}=-\frac{t_{k}-s_{k}}{s_{k+1}-s_{k}}\left(B_{s_{k+1}}-B_{t_{k}}\right)-\frac{s_{k+1}-t_{k}}{s_{k+1}-s_{k}} B_{s_{k}}
$$

which allows to easily compute the variance. As for the second claim, it is enough to show that Δ_{k} is uncorrelated with $B_{s_{j+1}}-B_{s_{j}}$, for any $j \in\{1, \ldots, k\}$, which is direct by computations.

We conclude that the law of $\left(B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{k}}\right)$ conditional on $\left(B_{s_{1}}, \ldots, B_{s_{k+1}}\right)$ is Gaussian with mean vector μ with

$$
\mu^{k}:=\frac{t_{k}-s_{k}}{s_{k+1}-s_{k}} B_{s_{k+1}}+\frac{s_{k+1}-t_{k}}{s_{k+1}-s_{k}} B_{s_{k}}, k \in \mathbb{N}^{\star}
$$

and variance-covariance matrix Σ which is diagonal with

$$
\Sigma^{k, k}:=\frac{\left(s_{k+1}-t_{k}\right)\left(t_{k}-s_{k}\right)}{s_{k+1}-s_{k}}
$$

2) Let $\mathcal{D}^{n}:=\left\{a 2^{-m}: m \in\{1, \ldots, n\}, a \in\left\{0,1, \ldots, 2 z^{m}\right\}\right\}$. We construct \mathbf{W} recursively on each \mathcal{D}^{n}, so that finally we obtain W on \mathcal{D}. The first step is to define $W_{1}:=Z_{1}$, so that clearly $W \stackrel{\text { law }}{=} B$ on $\{0,1\}$. If we have defined W on \mathcal{D}^{n} in terms of $\left(Z_{1}, Z_{2}, \ldots, Z_{2^{n-1}}\right)$, we extend it to \mathcal{D}^{n+1} by

$$
W_{(2 j-1) 2^{-(m+1)}}:=\frac{1}{2} W_{(j-1) 2^{-m}}+\frac{1}{2} W_{j 2^{-m}}+2^{-n / 2-1} Z_{2^{n}+j}, j \in\left\{1, \ldots, 2^{n}\right\}
$$

By induction, assume that $W \stackrel{\text { law }}{=} B$ on \mathcal{D}^{n}. We also obtain from this construction that the law of $\left.W\right|_{\mathcal{D}^{n+1}}$ conditional on $\left.W\right|_{\mathcal{D}^{n}}$ is equal to the law of $\left.B\right|_{\mathcal{D}^{n+1}}$ conditional on $\left.B\right|_{\mathcal{D}^{n}}$, by 1). Therefore, the inductive step is valid, and we finally obtain that the law of W is equal to the law of $\left.B\right|_{\mathcal{D}}$ by the Ionescu-Tulcea theorem.

